商城 cshang@fudan.edu.cn

   复旦大学化学系

   教授 博士生导师




学术任职


  • 中国化学会计算(机)化学专业委员会委员

  • Clean Energy 青年编委


学习工作经历


  • 2004年9月-2008年7月

复旦大学 学士
  • 2008年9月-2013年7月

复旦大学 博士
  • 2013年9月-2015年9月

英国剑桥大学 博士后
  • 2015年10月-2021年12月

复旦大学 青年研究员
  • 2021年12月至今

复旦大学 教授









获奖情况


  • 2021 国家自然科学优秀青年基金

  • 2020 复旦大学卓学人才计划

  • 2019 上海市自然科学奖一等奖(第三完成人)

  • 2019 复旦大学青年教师教学竞赛三等奖

  • 2016 上海市浦江人才计划

  • 2015 上海市优秀博士学位论文

  • 2012 唐敖庆奖学金

  • 2011 教育部博士学术新人奖


研究兴趣


  • 模拟方法开发

  • 计算软件开发

  • 并行算法设计

  • 材料结构预测

  • 催化理论模拟


授课情况


  • 量子化学原理及应用(研究生)

  • 物理化学AI(本科)

  • 能源与催化(周末先修学堂)


课题组员

当前组员

彭尧(博士)、何子瞻(博士)、雷媛(硕士)

毕业人员

刘倩钰、杨潇


软件开发

Large-scale Atomic Simulation package with neural network Potential (LASP)


研究成果

2024

Ÿ   Xin-Tian Xie, Zheng-Xin Yang, Dongxiao Chen, Yun-Fei Shi, Pei-Lin Kang, Sicong Ma, Ye-Fei Li, Cheng Shang* and Zhi-Pan Liu*, LASP to the Future of Atomic Simulation: Intelligence and Automation, Precis. Chem.2024, ASAP

Ÿ   Zheng-Xin Yang, Xin-Tian Xie, Pei-Lin Kang, Zhen-Xiong Wang, Cheng Shang* and Zhi-Pan Liu*, Many-Body Function Corrected Neural Network with Atomic Attention (MBNN-att) for Molecular Property Prediction, J. Chem. Theory Comput., 2024, 20, 6717-6727

Ÿ   Xiao Yang, Cheng Shang* and Zhi-Pan Liu*, Generalized mechanism for the solid phase transition of M2O3 (M=AI, Ga) featuring single cation migration and martensitic lattice transformation, Chin. J. Chem. Phys., 2024, 37, 465-470

Ÿ   Yao Peng, Xia-Lan Si, Cheng Shang* and Zhi-Pan Liu*, Abundance of Low-Energy Oxygen Vacancy Pairs Dictates the Catalytic Performance of Cerium-Stabilized Zirconia, J. Am. Chem. Soc., 2024, 146, 10822-10832

Ÿ   Sicong Ma*, Yanwei Cao, Yun-Fei Shi, Cheng Shang, Lin He* and Zhi-Pan Liu*, Data-driven discovery of active phosphine ligand space for cross-coupling reactions, Chem. Sci., 2024, 15, 13359-13368

Ÿ   Zheng-Yang Hu, Ling-Heng Luo, Cheng Shang* and Zhi-Pan Liu*, Free Energy Pathway Exploration of Catalytic Formic Acid Decomposition on Pt-Group Metals in Aqueous Surroundings, ACS Catal., 2024, 14, 7684-7695

Ÿ   Yi-Bin Fang, Cheng Shang, Zhi-Pan Liu and Xin-Gao Gong*, Structural transitions in liquid semiconductor alloys: A molecular dynamics study with a neural network potential, J. Chem. Phys., 2024, 161, 104504

Ÿ   Dongxiao Chen, Lin Chen, Qian-Cheng Zhao, Zheng-Xin Yang, Cheng Shang and Zhi-Pan Liu*, Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver, Nat. Catal., 2024, 7, 536-545

2023

Ÿ   Pan Zhang, Cheng Shang, Zhipan Liu, Ji-Hui Yang* and Xin-Gao Gong*, Origin of performance degradation in high-delithiation LixCoO2: insights from direct atomic simulations using global neural network potentials, J. Mater. Chem. A, 2023, 11, 5370-5379

Ÿ   Chen Wang, Xiyu Song, Yao Wang, Rui Xu, Xiangyu Gao, Cheng Shang, Peng Lei, Qingdao Zeng, Yaming Zhou, Banglin Chen* and Peng Li*, A Solution-Processable Porphyrin-Based Hydrogen-Bonded Organic Framework for Photoelectrochemical Sensing of Carbon Dioxide, Angew. Chem. Int. Ed., 2023, 62, e202311482

Ÿ   Yun-Fei Shi, Zheng-Xin Yang, Sicong Ma, Pei-Lin Kang, Cheng Shang, P. Hu* and Zhi-Pan Liu*, Machine Learning for Chemistry: Basics and Applications, Engineering, 2023, 27, 70-83

Ÿ   Cheng Shang* and Zhi-Pan Liu*, Chapter 14 - Constructing machine learning potentials with active learning, Quantum Chemistry in the Age of Machine Learning, 2023, Elsevier

Ÿ   Sicong Ma, Cheng Shang and Zhi-Pan Liu*, Destruction and preservation of nonstoichiometric ZnCr oxide catalyst from machine-learning simulation, J. Catal., 2023, 426, 294-300

Ÿ   Qian-Yu Liu, Dongxiao Chen, Cheng Shang* and Zhi-Pan Liu*, An optimal Fe–C coordination ensemble for hydrocarbon chain growth: a full Fischer–Tropsch synthesis mechanism from machine learning, Chem. Sci., 2023, 14, 9461-9475

Ÿ   Minchao Liu, Cheng Shang, Tiancong Zhao, Hongyue Yu, Yufang Kou, Zirui Lv, Mengmeng Hou, Fan Zhang, Qiaowei Li, Dongyuan Zhao and Xiaomin Li*, Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework, Nat. Commun., 2023, 14, 1211

Ÿ   Feng Li, Xiaobin Cheng, Gongxun Lu, Yi-Chen Yin, Ye-Chao Wu, Ruijun Pan, Jin-Da Luo, Fanyang Huang, Li-Zhe Feng, Lei-Lei Lu, Tao Ma, Lirong Zheng, Shuhong Jiao, Ruiguo Cao, Zhi-Pan Liu, Hongmin Zhou, Xinyong Tao*, Cheng Shang* and Hong-Bin Yao*, Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes, J. Am. Chem. Soc., 2023, 145, 27774-27787

Ÿ   Pei-Lin Kang, Zheng-Xin Yang, Cheng Shang* and Zhi-Pan Liu*, Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface, J. Chem. Theory Comput., 2023, 19, 7972-7981

Ÿ   Dongxiao Chen, Cheng Shang and Zhi-Pan Liu*, Machine-learning atomic simulation for heterogeneous catalysis, npj Comput. Mater., 2023, 9, 2

Ÿ   Yanwei Cao, Yao Peng, Danyang Cheng, Lin Chen, Maolin Wang, Cheng Shang, Lirong Zheng, Ding Ma*, Zhi-Pan Liu* and Lin He*, Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts, ACS Catal., 2023, 13, 735-743

2022

Ÿ   Yun-Fei Shi, Pei-Lin Kang, Cheng Shang* and Zhi-Pan Liu*, Methanol Synthesis from CO2/CO Mixture on Cu–Zn Catalysts from Microkinetics-Guided Machine Learning Pathway Search, J. Am. Chem. Soc., 2022, 144, 13401-13414

Ÿ   Ling-Heng Luo, Si-Da Huang, Cheng Shang* and Zhi-Pan Liu*, Resolving Activation Entropy of CO Oxidation under the Solid–Gas and Solid–Liquid Conditions from Machine Learning Simulation, ACS Catal., 2022, 12, 6265-6275

Ÿ   Qian-Yu Liu, Cheng Shang* and Zhi-Pan Liu*, In Situ Active Site for Fe-Catalyzed Fischer–Tropsch Synthesis: Recent Progress and Future Challenges, J. Phys. Chem. Lett., 2022, 13, 3342-3352

Ÿ   Xiao-Tian Li, Lin Chen, Cheng Shang and Zhi-Pan Liu*, Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress, Chin. J. Catal., 2022, 43, 1991-2000

Ÿ   Feng Li, Xiaobin Cheng, Lei-Lei Lu, Yi-Chen Yin, Jin-Da Luo, Gongxun Lu, Yu-Feng Meng, Hongsheng Mo, Te Tian, Jing-Tian Yang, Wen Wen, Zhi-Pan Liu, Guozhen Zhang*, Cheng Shang* and Hong-Bin Yao*, Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes, Nano Lett., 2022, 22, 2461-2469

Ÿ   Pei-Lin Kang, Yun-Fei Shi, Cheng Shang and Zhi-Pan Liu*, Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity, Chem. Sci., 2022, 13, 8148-8160

Ÿ   Lin Chen, Xiao-Tian Li, Sicong Ma, Yi-Fan Hu, Cheng Shang and Zhi-Pan Liu*, Highly Selective Low-Temperature Acetylene Semihydrogenation Guided by Multiscale Machine Learning, ACS Catal., 2022, 12, 14872-14881

Ÿ   Dongxiao Chen, Cheng Shang and Zhi-Pan Liu*, Automated search for optimal surface phases (ASOPs) in grand canonical ensemble powered by machine learning, J. Chem. Phys., 2022, 156, 094104

2021

Ÿ   Ze-Yi Zhu, Ye-Fei Li*, Cheng Shang and Zhi-Pan Liu*, Thermodynamics and Catalytic Activity of Ruthenium Oxides Grown on Ruthenium Metal from a Machine Learning Atomic Simulation, J. Phys. Chem. C, 2021, 125, 17088-17096

Ÿ   Yao Peng, Cheng Shang* and Zhi-Pan Liu*, The dome of gold nanolized for catalysis, Chem. Sci., 2021, 12, 5664-5671

Ÿ   Qian-Yu Liu, Cheng Shang* and Zhi-Pan Liu*, In Situ Active Site for CO Activation in Fe-Catalyzed Fischer–Tropsch Synthesis from Machine Learning, J. Am. Chem. Soc., 2021, 143, 11109-11120

Ÿ   Xiao-Tian Li, Lin Chen, Cheng Shang and Zhi-Pan Liu*, In Situ Surface Structures of PdAg Catalyst and Their Influence on Acetylene Semihydrogenation Revealed by Machine Learning and Experiment, J. Am. Chem. Soc., 2021, 143, 6281-6292

Ÿ   Pei-Lin Kang, Cheng Shang* and Zhipan Liu*, Recent Implementations in LASP 3.0: Global Neural Network Potential with Multiple Elements and Better Long-Range Description, Chin. J. Chem. Phys., 2021, 34, 583

Ÿ   Shu-Hui Guan, Cheng Shang* and Zhi-Pan Liu*, Structure and Dynamics of Energy Materials from Machine Learning Simulations: A Topical Review, Chin. J. Chem., 2021, 39, 3144-3154

2020

Ÿ   Sicong Ma, Cheng Shang, Chuan-Ming Wang* and Zhi-Pan Liu*, Thermodynamic rules for zeolite formation from machine learning based global optimization, Chem. Sci., 2020, 11, 10113-10118

Ÿ   Sicong Ma, Pei-Lin Kang, Cheng Shang and Zhi-Pan Liu*, Chapter 19 Machine Learning for Heterogeneous Catalysis: Global Neural Network Potential from Construction to Applications, Machine Learning in Chemistry: The Impact of Artificial Intelligence, 2020, The Royal Society of Chemistry

Ÿ   Xiao-Tian Li, Lin Chen, Guang-Feng Wei, Cheng Shang and Zhi-Pan Liu*, Sharp Increase in Catalytic Selectivity in Acetylene Semihydrogenation on Pd Achieved by a Machine Learning Simulation-Guided Experiment, ACS Catal., 2020, 10, 9694-9705

Ÿ   Pei-Lin Kang, Cheng Shang* and Zhi-Pan Liu*, Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration, Acc. Chem. Res., 2020, 53, 2119-2129

Ÿ   Shu-Hui Guan, Ke-Xiang Zhang, Cheng Shang* and Zhi-Pan Liu*, Stability and anion diffusion kinetics of Yttria-stabilized zirconia resolved from machine learning global potential energy surface exploration, J. Chem. Phys., 2020, 152, 094703

Ÿ   Shu-Hui Guan, Cheng Shang* and Zhi-Pan Liu*, Resolving the Temperature and Composition Dependence of Ion Conductivity for Yttria-Stabilized Zirconia from Machine Learning Simulation, J. Phys. Chem. C, 2020, 124, 15085-15093

Ÿ   Qiuxian Chen, Wenwen Xin, Qiaozhen Ji, Ting Hu, Jun Zhang, Cheng Shang, Zhipan Liu, Xueyang Liu* and Hongyu Chen*, Ultrasonic Bending of Silver Nanowires, ACS Nano, 2020, 14, 15286-15292

2019

Ÿ   Cheng Shang and Zhi-Pan Liu*, Stochastic Surface Walking Method and Applications to Real Materials, Handbook of Materials Modeling: Applications: Current and Emerging Materials, 2019, Springer International Publishing, Cham

Ÿ   Cheng Shang*, Si-Da Huang and Zhi-Pan Liu*, Massively parallelization strategy for material simulation using high-dimensional neural network potential, J. Comput. Chem., 2019, 40, 1091-1096

Ÿ   Si-Cong Ma, Cheng Shang* and Zhi-Pan Liu*, Heterogeneous catalysis from structure to activity via SSW-NN method, J. Chem. Phys., 2019, 151, 050901

Ÿ   Pei-Lin Kang, Cheng Shang* and Zhi-Pan Liu*, Glucose to 5-Hydroxymethyl furfural: Origin of Site-Selectivity Resolved by Machine Learning Based Reaction Sampling, J. Am. Chem. Soc., 2019, 141, 20525-20536

Ÿ   Si-Da Huang, Cheng Shang* and Zhi-Pan Liu*, Ultrasmall Au clusters supported on pristine and defected CeO2: Structure and stability, J. Chem. Phys., 2019, 151, 174702

Ÿ   Si-Da Huang, Cheng Shang*, Pei-Lin Kang, Xiao-Jie Zhang and Zhi-Pan Liu*, LASP: Fast global potential energy surface exploration, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2019, 9, e1415

Ÿ   Fan-Chen Kong, Ye-Fei Li, Cheng Shang and Zhi-Pan Liu*, Stability and Phase Transition of Cobalt Oxide Phases by Machine Learning Global Potential Energy Surface, J. Phys. Chem. C, 2019, 123, 17539-17547

2018

Ÿ   Si-Da Huang, Cheng Shang, Pei-Lin Kang and Zhi-Pan Liu*, Atomic structure of boron resolved using machine learning and global sampling, Chem. Sci., 2018, 9, 8644-8655

Ÿ   Shu-Hui Guan, Cheng Shang*, Si-Da Huang and Zhi-Pan Liu*, Two-Stage Solid-Phase Transition of Cubic Ice to Hexagonal Ice: Structural Origin and Kinetics, J. Phys. Chem. C, 2018, 122, 29009-29016

2017

Ÿ   Cheng Shang*, Xiao-Jie Zhang and Zhi-Pan Liu*, Crystal phase transition of urea: what governs the reaction kinetics in molecular crystal phase transitions, Phys. Chem. Chem. Phys., 2017, 19, 32125-32131

Ÿ   Xiao-Jie Zhang, Cheng Shang and Zhi-Pan Liu*, Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu, J. Chem. Phys., 2017, 147, 152706

Ÿ   Xiao-Jie Zhang, Cheng Shang and Zhi-Pan Liu*, Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling, Phys. Chem. Chem. Phys., 2017, 19, 4725-4733

Ÿ   Zi-Yang Wei, Cheng Shang, Xiao-Jie Zhang and Zhi-Pan Liu*, Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr, Phys. Rev. B, 2017, 95, 214111

Ÿ   Deyan Sun, Cheng Shang, Zhipan Liu and Xingao Gong*, Intrinsic Features of an Ideal Glass, Chin. Phys. Lett., 2017, 34, 026402

Ÿ   Si-Da Huang, Cheng Shang, Xiao-Jie Zhang and Zhi-Pan Liu*, Material discovery by combining stochastic surface walking global optimization with a neural network, Chem. Sci., 2017, 8, 6327-6337

Postdoc. & PhD

Ÿ   Cheng Shang*, Chris S. Whittleston*, Kyle H. Sutherland-Cash* and David J. Wales*, Analysis of the Contrasting Pathogenicities Induced by the D222G Mutation in 1918 and 2009 Pandemic Influenza A Viruses, J. Chem. Theory Comput., 2015, 11, 2307-2314

Ÿ   Cheng Shang*, Julian M. Philpott, Nick Bampos, Paul D. Barker and David J. Wales*, How to make a porphyrin flip: dynamics of asymmetric porphyrin oligomers, Phys. Chem. Chem. Phys., 2015, 17, 27094-27102

Ÿ   Cheng Shang, Wei-Na Zhao and Zhi-Pan Liu*, Searching for new TiO2 crystal phases with better photoactivity, J. Phys.: Condens. Matter, 2015, 27, 134203

Ÿ   Guang-Feng Wei, Cheng Shang and Zhi-Pan Liu*, Confined platinum nanoparticle in carbon nanotube: structure and oxidation, Phys. Chem. Chem. Phys., 2015, 17, 2078-2087

Ÿ   Yihan Zhu*, Jiating He, Cheng Shang, Xiaohe Miao, Jianfeng Huang, Zhipan Liu, Hongyu Chen* and Yu Han*, Chiral Gold Nanowires with Boerdijk-Coxeter-Bernal Structure, J. Am. Chem. Soc., 2014, 136, 12746-12752

Ÿ   Zhijun Xu*, Yang Yang, Ziqiu Wang, Donald Mkhonto, Cheng Shang, Zhi-Pan Liu, Qiang Cui and Nita Sahai*, Small Molecule-Mediated Control of Hydroxyapatite Growth: Free Energy Calculations Benchmarked to Density Functional Theory, J. Comput. Chem., 2014, 35, 70-81

Ÿ   C. Shang* and D. J. Wales*, Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics, J. Chem. Phys., 2014, 141, 071101

Ÿ   Samuel T. Chill, Jacob Stevenson, Victor Ruehle, Cheng Shang, Penghao Xiao, James D. Farrell, David J. Wales* and Graeme Henkelman*, Benchmarks for Characterization of Minima, Transition States, and Pathways in Atomic, Molecular, and Condensed Matter Systems, J. Chem. Theory Comput., 2014, 10, 5476-5482

Ÿ   Cheng Shang, Xiao-Jie Zhang and Zhi-Pan Liu*, Stochastic surface walking method for crystal structure and phase transition pathway prediction, Phys. Chem. Chem. Phys., 2014, 16, 17845-17856

Ÿ   Xiao-Jie Zhang, Cheng Shang and Zhi-Pan Liu*, Double-Ended Surface Walking Method for Pathway Building and Transition State Location of Complex Reactions, J. Chem. Theory Comput., 2013, 9, 5745-5753

Ÿ   Xiao-Jie Zhang, Cheng Shang and Zhi-Pan Liu*, From Atoms to Fullerene: Stochastic Surface Walking Solution for Automated Structure Prediction of Complex Material, J. Chem. Theory Comput., 2013, 9, 3252-3260

Ÿ   Cheng Shang and Zhi-Pan Liu*, Stochastic Surface Walking Method for Structure Prediction and Pathway Searching, J. Chem. Theory Comput., 2013, 9, 1838-1845

Ÿ   Jing Leng, Weiguo Gao*, Cheng Shang and Zhi-Pan Liu, Efficient softest mode finding in transition states calculations, J. Chem. Phys., 2013, 138, 094110

Ÿ   Cheng Shang and Zhi-Pan Liu*, Constrained Broyden Dimer Method with Bias Potential for Exploring Potential Energy Surface of Multistep Reaction Process, J. Chem. Theory Comput., 2012, 8, 2215-2222

Ÿ   Cheng Shang and Zhi-Pan Liu*, Origin and Activity of Gold Nanoparticles as Aerobic Oxidation Catalysts in Aqueous Solution, J. Am. Chem. Soc., 2011, 133, 9938-9947

Ÿ   Cheng Shang and Zhi-Pan Liu*, Is Transition Metal Oxide a Must? Moisture-Assisted Oxygen Activation in CO Oxidation on Gold/gamma-Alumina, J. Phys. Chem. C, 2010, 114, 16989-16995

Ÿ   Cheng Shang and Zhi-Pan Liu*, Constrained Broyden Minimization Combined with the Dimer Method for Locating Transition State of Complex Reactions, J. Chem. Theory Comput., 2010, 6, 1136-1144